本单元重点研究列两类方程来解决实际问题:
第一类,列形如ax±b=c的方程来解决生活实际中“比……的……倍多(少)……”的,一倍数是未知的问题。解决这类问题时关键是找准题目中数量之间相等的关系,列出方程。解方程时,可以利用等式的性质求解,并代入题目中检验。
第二类,列形如ax±bx=c的方程来解决生活实际中的“和倍”、“差倍”等问题。解决这类问题时关键是找准题目中数量之间相等的关系,列出方程。解方程时,可以先根据乘法分配律进行化简,再利用等式的性质求解,并代入题目中检验。
难点剖析
怎样找等量关系列方程
列方程解应用题的关键是正确理解题意,找出题中数量之间的相等关系。怎样找等量关系呢?
根据常见的基本数量关系列方程。
例如:甲、乙两人加工300个零件,甲每小时加工25个,乙每小时加工35个。两人合做几小时完成?
解:设两人合做X小时完成。
根据工程问题的基本数量关系式:
工作效率×工作时间=工作总量
列方程解:(25+35)×X=300
抓住题目中的关键语句找等量关系列方程。
例如:一个化肥厂,今年生产化肥2800吨,今年的产量比去年的2倍少100吨,去年生产化肥多少吨?
抓住题目中“今年的产量比去年的2倍少100吨”这一关键句进行分析,可以知道:去年产量的2倍-100吨=今年的产量。
解:设去年生产化肥X吨。
列方程得:2X-100=2800
利用线段图找等量关系列方程。
例如:南沙村有120公顷土地种蔬菜,其中种大白菜的面积是种青菜面积的3倍。种青菜和种大白菜的面积各有多少公顷?
解:设种青菜的面积为X公顷,种大白菜的面积为3X公顷。
画出线段图:
X公顷
种青菜的面积
3X公顷共300公顷
种大白菜的面积
从图中不难发现等量关系:种青菜的面积+种白菜的面积=总面积。
列方程得:X+3X=300
根据有关公式或概念列方程。
例如:把一块长方形菜地的四周围上18米的篱笆。已知菜地长5米,宽是多少米?
解:设宽是X分米,根据“长方形的周长=(长+宽)×2”这一公式列方程得:(5+X)×2=18